Tricky polynomial
Author: mathforces
Problem has been solved: 47 times
Русский язык
|
English Language
The polynomial $ f (x) = ax ^ {2018} + bx ^ {2017} + cx ^ {2016} $ has real coefficients not exceeding 2019 and $ f (\frac {1+ \sqrt {3} i} {2} ) = 2015 + 2019 \sqrt {3} i $. Find $ f (1) $.
Многочлен $f(x)=ax^{2018}+bx^{2017}+cx^{2016}$ имеет вещественные коэфициенты не превосходящие 2019 и $f(\frac{1+\sqrt{3}i}{2})=2015+2019\sqrt{3}i$. Найдите $f(1)$.
Sorry, you need to
login into your account