Minimizing Fibb
Author: mathforces
Problem has been solved: 119 times
Русский язык
|
English Language
Suppose that $F_1=F_2=1$ и $F_{n+2}=F_{n+1}+F_n$, for all positive integer $n$. Let $g(n)$ be the least possible value of $| a_1F_1 + a_2 F_2+....+a_nF_n | $, where $a_i=\pm 1$, for all $i=1,2,...,n$. What is the value of $g(1)+g(2)+...+g(2020)$?
Пусть $F_1=F_2=1$ и $F_{n+2}=F_{n+1}+F_n$, для всех натуральных $n$. Пусть $g(n)$ это наименьшее возможное значение выражения $| a_1F_1 + a_2 F_2+....+a_nF_n | $, где $a_i=\pm 1$, для всех $i=1,2,...,n$. Чему равно $g(1)+g(2)+...+g(2020)$?
Sorry, you need to
login into your account